9 Helpful Tools for Building a Data Pipeline

Companies create tons of disparate data throughout their organizations through applications, databases, files and streaming sources. Moving the data from one data source to another is a complex and tedious process. Ingesting different types of data into a common platform requires extensive skill and knowledge of both the inherent data type of use and sources.

Due to these complexities, this process can be faulty, leading to inefficiencies like bottlenecks, or the loss or duplication of data. As a result, data analytics becomes less accurate and less useful and in many instances, provide inconclusive or just plain inaccurate results.

For example, a company might be looking to pull raw data from a database or CRM system and move it to a data lake or data warehouse for predictive analytics. To ensure this process is done efficiently, a comprehensive data strategy needs to be deployed necessitating the creation of a data pipeline.

What is a Data Pipeline?

A data pipeline is a set of actions organized into processing steps that integrates raw data from multiple sources to one destination for storage, business intelligence (BI), data analysis, and visualization.

There are three key elements to a data pipeline: source, processing, and destination. The source is the starting point for a data pipeline. Data sources may include relational databases and data from SaaS applications. There are two different methods for processing or ingesting models: batch processing and stream processing.

  • Batch processing: Occurs when the source data is collected periodically and sent to the destination system. Batch processing enables the complex analysis of large datasets. As patch processing occurs periodically, the insights gained from this type of processing are from information and activities that occurred in the past.
  • Stream processing: Occurs in real-time, sourcing, manipulating, and loading the data as soon as it’s created. Stream processing may be more appropriate when timeliness is important because it takes less time than batch processing. Additionally, stream processing comes with lower cost and lower maintenance.

The destination is where the data is stored, such as an on-premises or cloud-based location like a data warehouse, a data lake, a data mart, or a certain application. The destination may also be referred to as a “sink”.

What is a Data Pipeline and How to Build One | 2ND Watch

Data Pipeline vs. ETL Pipeline

One popular subset of a data pipeline is an ETL pipeline, which stands for extract, transform, and load. While popular, the term is not interchangeable with the umbrella term of “data pipeline”. An ETL pipeline is a series of processes that extract data from a source, transform it, and load it into a destination. The source might be business systems or marketing tools with a data warehouse as a destination.

There are a few key differentiators between an ETL pipeline and a data pipeline. First, ETL pipelines always involve data transformation and are processed in batches, while data pipelines ingest in real-time and do not always involve data transformation. Additionally, an ETL Pipeline ends with loading the data into its destination, while a data pipeline doesn’t always end with the loading. Instead, the loading can instead activate new processes by triggering webhooks in other systems.

Uses for Data Pipelines:

  • To move, process, and store data
  • To perform predictive analytics
  • To enable real-time reporting and metric updates

Uses for ETL Pipelines:

  • To centralize your company’s data
  • To move and transform data internally between different data stores
  • To Enrich your CRM system with additional data

9 Popular Data Pipeline Tools

Although a data pipeline helps organize the flow of your data to a destination, managing the operations of your data pipeline can be overwhelming. For efficient operations, there are a variety of useful tools that serve different pipeline needs. Some of the best and most popular tools include:

  • AWS Data Pipeline: Easily automates the movement and transformation of data. The platform helps you easily create complex data processing workloads that are fault tolerant, repeatable, and highly available.
  • Azure Data Factory: A data integration service that allows you to visually integrate your data sources with more than 90 built-in, maintenance-free connectors.
  • Etleap: A Redshift data pipeline tool that’s analyst-friendly and maintenance-free. Etleap makes it easy for business to move data from disparate sources to a Redshift data warehouse.
  • Fivetran: A platform that emphasizes the ability to unlock faster time to insight, rather than having to focus on ETL using robust solutions with standardized schemas and automated pipelines.
  • Google Cloud Dataflow: A unified stream and batch data processing platform that simplifies operations and management and reduces the total cost of ownership.
  • Keboola: Keboola is a platform is a SaaS platform that starts for free and covers the entire pipeline operation cycle.
  • Segment: A customer data platform used by businesses to collect, clean, and control customer data to help them understand the customer journey and personalize customer interactions.
  • Stitch: Stitch is a cloud-first platform rapidly moves data to the analysts of your business within minutes so that it can be used according to your requirements. Instead of focusing on your pipeline, Stitch helps reveal valuable insights.
  • Xplenty: A cloud-based platform for ETL that is beginner-friendly, simplifying the ETL process to prepare data for analytics.

 

How We Can Help

Building a data pipeline can be daunting due to the complexities involved in safely and efficiently transferring data. At 2nd Watch, we can build and manage your data for you so you can focus on BI and analytics to focus on your business. Contact us if you would like to learn more.

Facebooktwitterlinkedinmailrss

Data Center Migration to the Cloud: Why Your Business Should Do it and How to Plan for it

Data center migration is ideal for businesses who are looking to exit or reduce on-premises data centers, migrate workloads as is, modernize apps, or leave another cloud. Executing migrations, however, is no small task, and as a result, there are many enterprise workloads that still run in on-premises data centers. Often technology leaders want to migrate more of their workloads and infrastructure to private or public cloud, but they are turned off by the seemingly complex processes and strategies involved in cloud migration, or lack the internal cloud skills necessary to make the transition.

Data Center Migration

 

Though data center migration can be a daunting business initiative, the benefits of moving to the cloud is well worth the effort, and the challenges of the migration process can be mitigated by creating a strategy, using the correct tools, and utilizing professional services. Data center migration provides a great opportunity to revise, rethink, and improve an organization’s IT architecture. It also ultimately impacts business critical drivers such as reducing capital expenditure, decreasing ongoing cost, improving scalability and elasticity, improving time-to-market, enacting digital transformation and attaining improvements in security and compliance.

What are Common Data Center Migration Challenges?

To ensure a seamless and successful migration to the cloud, businesses should be aware of the potential complexities and risks associated with data center migration. The complexities and risks are addressable, and if addressed properly, organizations can create not only an optimal environment for their migration project, but provide the launch point for business transformation.

Not Understanding Workloads

While cloud platforms are touted as flexible, it is a service-oriented resource, and it should be treated as such. To be successful in cloud deployment, organizations need to be aware of performance, compatibility, performance requirements (including hardware, software, and IOPS), required software, and adaptability to changes in their workloads. Teams need to run their cloud workloads on the cloud service that is best aligned with the needs of the application and the business.

Not Understanding Licensing

Cloud marketplaces allow businesses to easily “rent” software at an hourly rate. Though the ease of this purchase is enticing, it’s important to remember that it’s not the only option out there. Not all large vendors offer licensing mobility for all applications outside the operating system. In fact, companies should leverage existing relationships with licensing brokers. Just because a business is migrating to the cloud doesn’t mean that a business should abandon existing licensing channels. Organizations should familiarize themselves with their choices for licensing to better maximize ROI.

Not Looking for Opportunities to Incorporate PaaS

Platform as a service (PaaS) is a cloud computing model where a cloud service provider delivers hardware and software tools to users over the internet versus a build-it-yourself Infrastructure as a Service (IaaS) model. The PaaS provider abstracts everything—servers, networks, storage, operating system software, databases, development tools—enabling teams to focus on their application. This enables PaaS customers to build, test, deploy, run, update and scale applications more quickly and inexpensively than they could if they had to build out and manage an IaaS environment on top of their application. While businesses shouldn’t feel compelled to rewrite all their network configurations and operating environments, they should see where they can have quick PaaS wins to replace aging systems.

Not Proactively Preparing for Cloud Migration

Building a new data center is a major IT event and usually goes hand-in-hand with another significant business event, such as an acquisition, or outgrowing the existing data center. In the case of moving to a new on-premises data center, business will slow down as the company takes on a physical move. Migrating to the cloud is usually not coupled with an eventful business change, and as a result, business does not stop when a company chooses to migrate to the cloud. Therefore, a critical part of cloud migration success is designing the whole process as something that can run along with other IT changes that occur on the same timeline. Application teams frequently adopt cloud deployment practices months before their systems actually migrate to the cloud. By doing so, the team is ready before their infrastructure is even prepared, which makes cloud migration a much smoother event. Combining cloud events with other changes in this manner will maximize a company’s ability to succeed.

Treating and Running the Cloud Environment Like Traditional Data Centers

It seems obvious that cloud environments should be treated differently from traditional data centers, but this is actually a common pitfall for organizations to fall in. For example, preparing to migrate to the cloud should not include traditional data center services, like air conditioning, power supply, physical security, and other data center infrastructure, as a part of the planning. Again, this may seem very obvious, but if a business is used to certain practices, it can be surprisingly difficult to break entrenched mindsets and processes.

How to Plan for a Data Center Migration

While there are potential challenges associated with data center migration, the benefits of moving from physical infrastructures, enterprise data centers and/or on-premises data storage systems to a cloud data center or a hybrid cloud system is well worth the effort.

Now that we’ve gone over the potential challenges of data center migration, how do businesses enable a successful data center migration while effectively managing risk?

Below, we’ve laid out a repeatable high level migration strategy that is broken down into four phases: Discovery, Planning, Execution, and Optimization. By leveraging a repeatable framework as such, organizations create the opportunity to identify assets, minimize migration costs and risks using a multi-phased migration approach, enable deployment and configuration, and finally, optimize the end state.

Phase 1: Discovery

During the Discovery phase, companies should understand and document the entire data center footprint. This means understanding the existing hardware mapping, software applications, storage layers (databases, file shares), operating systems, networking configurations, security requirements, models of operation (release cadence, how to deploy, escalation management, system maintenance, patching, virtualization, etc.), licensing and compliance requirements, as well as other relevant assets.

The objective of this phase is to have a detailed view of all relevant assets and resources of the current data center footprint.

The key milestones in the Discovery phase are:

  • Creating a shared data center inventory footprint: Every team and individual who is a part of the data center migration to the cloud should be aware of the assets and resources that will go live.
  • Sketching out an initial cloud platform foundations design: This involves identifying centralized concepts of the cloud platform organization such as folder structure, Identity and Access Management (IAM)  model, network administration model, and more.

As a best practice, companies should engage in cross-functional dialogue within their organizations, including teams from IT to Finance to Program Management, ensuring everyone is aligned on changes to support future cloud processes. Furthermore, once a business has migrated from a physical data center to the cloud, they should consider whether their data center team is trained to support the systems and infrastructure of the cloud provider.

Phase 2: Planning

When a company is entering the Planning phase, they are leveraging the assets and deliverables gathered in the Discovery phase to create migration waves to be sequentially deployed into non-production and production environments.

Typically, it is best to target non-production migration waves first, which helps identify the sequence of waves to migrate first. To start, consider the following:

  • Mapping the current server inventory to the cloud platform’s machine types: Each current workload will generally run on a virtual machine type with similar computing power, memory and disk. Oftentimes though, the current workload is overprovisioned, so each workload should be evaluated to ensure that it is migrated onto the right VM for that given workload.
  • Timelines: Businesses should lay out their target dates for each migration project.
  • Workloads in each grouping: Figure out what migration waves are grouped by i.e. non-production vs. production applications.
  • Cadence of code releases: Factor in any upcoming code releases as this may impact the decision of whether to migrate sooner or later.
  • Time for infrastructure deployment and testing: Allocate adequate time for testing infrastructures before fully moving over to the cloud.
  • Number of application dependencies: Migration order should be influenced by the number of application dependencies. The applications with the fewest dependencies are generally good candidates for migration first. In contrast, wait to migrate an application that depends on multiple databases.
  • Migration complexity and risk: Migration order should also take complexity into consideration. Tackling simpler aspects of the migration first will generally yield a more successful migration.

As mentioned above, the best practice for migration waves is to start with more predictable and simple workloads. For instance, companies should start with migrating file shares first, then databases and domain controlled, and save the apps for last. However, sometimes the complexity and dependencies don’t allow for a straightforward migration. In these cases, utilizing an experienced service provider who has experience with these complex environments will be prudent.

Phase 3: Execution

Once companies have developed a plan, they can bring them to fruition in the Execution phase. Here, businesses will need to be deliberate about the steps they take and the configurations they develop.

In the Execution phase, companies will put into place infrastructure components and ensure they are configured appropriately, like IAM, networking, firewall rules, and Service Accounts. Here is also where teams should test the applications on the infrastructure configurations to ensure that they have access to their databases, file shares, web servers, load balancers, Active Directory servers and more. Execution also includes using logging and monitoring to ensure applications continue to function with the necessary performance.

In order for the Execution phase to be successful, there needs to be agile application debugging and testing. Moreover, organizations should have both a short and long term plan for resolving blockers that may come up during the migration. The Execution phase is iterative and the goal should be to ensure that applications are fully tested on the new infrastructure.

Phase 4: Optimization

The last phase of a data center migration project is Optimization. After a business has migrated their workloads to the cloud, they should conduct periodic review and planning to optimize the workloads. Optimization includes the following activities:

  • Resizing machine types and disks
  • Leveraging a software like Terraform for more agile and predictable deployments
  • Improving automation to reduce operational overhead
  • Bolstering integration with logging, monitoring, and alerting tools
  • Adopting managed services to reduce operational overhead

Cloud services provide visibility into resource consumption and spend, and organizations can more easily identify the compute resources they are paying for. Additionally, businesses can identify virtual machines they need or don’t need. By migrating from a traditional data center environment to a cloud environment, teams will be able to more easily optimize their workloads due to the powerful tools that cloud platforms provide.

How do I take the first step in data center migration?

While undertaking a full data center migration is a significant project, it is worthwhile. The migration framework we’ve provided can help any business break down the process into manageable stages and move fully to the cloud.

When you’re ready to take the first step, we’re here to help to make the process even easier. Contact a 2nd Watch advisor today to get started with your data center migration to the cloud.

 

Facebooktwitterlinkedinmailrss

3 Advantages to Embracing the DevOps Movement (Plus Bonus Pipeline Info!)

What is DevOps?

As a result of the increase in cloud adoption across all industries, understanding practices and tools that help organizations’ software run efficiently is essential to how their cloud environment and organization operate. However, many companies do not have the knowledge or expertise needed for success. In fact, Puppet’s 2021 State of DevOps Report found that while 2 in 3 respondents report using the public cloud, only 1 in 4 use the cloud to its full potential.

Enter the DevOps movement.

What is DevOps

The concept of DevOps combines development and operations to encourage collaboration, embrace automation, and speed up the deployment process. Historically, development and operations teams worked independently, leading to inefficiencies and inconsistencies in objectives and department leadership. DevOps is the movement to eliminate these roadblocks and bring the two communities together to transform how their software operates.

According to a 2020 Atlassian survey, 99% of developers & IT decision-makers say DevOps has positively impacted their organization. Benefits include helping advance their career, and better and faster deliverables. Given the favorable outcome for these developers and IT decision-makers, adopting DevOps tools and practices is a no-brainer. But here are three more advantages to embracing the DevOps movement:

1. Speed

Practices like microservices and continuous delivery allow your business operations to move faster, as your operations and development teams can innovate for customers more quickly, adapt to changing markets, and efficiently drive business results. Additionally, continuous integration and continuous delivery (CI/CD) automate the software release process for fast and continuous software delivery. A quick release process will allow you to release new features, fix bugs, respond to your customers’ needs, and ultimately, provide your organization with a competitive advantage.

2. Security

While DevOps focuses on speed and agile software development, security is still of high priority in a DevOps environment. Tools such as automated compliance policies, fine-grained controls, and configuration management techniques will help you reap the speed and efficiencies provided by DevOps while maintaining control and compliance of your environment.

3. Improved Collaboration

DevOps is more than just technical practices and tools. A complete DevOps transformation involves adopting cultural values and organizational practices that increase collaboration and improve company culture. The DevOps cultural model emphasizes values like ownership and accountability, which work together to improve company culture. As development and operations teams work closely together, their collaboration reduces inefficiencies in their workflows. Additionally, collaboration entails succinctly communicating roles, plans, and goals. The State of DevOps Report also found that clarity of purpose, mission and operating context seem to be strongly associated with highly evolved organizations.

In short, teams who adopt DevOps practices can improve and streamline their deployment pipeline.

What is a DevOps Pipeline?

What is a DevOps pipeline

The term “DevOps Pipeline” is used to describe the set of automated processes and tools that allow developer and operations teams to implement, test, and deploy code to a production environment in a structured and organized manner.

A DevOps pipeline may look different or vary from company to company, but there are typically eight phases: plan, code, build, test, release, deploy, operate, and monitor. When developing a new application, a DevOps pipeline ensures that the code runs smoothly. Once written, various tests are run on the code to flush out potential bugs, mistakes, or any other possible errors. After building the code and running the tests for proper performance, the code is ready for deployment to external users.

A significant characteristic of a DevOps pipeline is it is continuous, meaning each function occurs on an ongoing basis. The most vital one, which was mentioned earlier, is CI/CD. CI, or continuous integration, is the practice of automatically and continuously building and testing any changes submitted to an application. CD, or continuous delivery, extends CI by using automation to release software frequently and predictably with the click of a button. CD allows developers to perform a more comprehensive assessment of updates to confirm there are no issues.

Other “continuous” DevOps practices include:

  • Continuous deployment: This practice goes beyond continuous delivery (CD). It is an entirely automated process that requires no human intervention, eliminating the need for a “release day.”
  • Continuous feedback: Applying input from customers and stakeholders, and systematic testing and monitoring code in the pipeline, allows developers to implement changes faster, leading to greater customer satisfaction.
  • Continuous testing: A fundamental enabler of continuous feedback. Performing automated tests on the code throughout the pipeline leads to faster releases and a higher quality product.
  • Continuous monitoring: Another component of continuous feedback. Use this practice to continuously assess the health and performance of your applications and identify any issues.
  • Continuous operations: Use this practice to minimize or eliminate downtime for your end users through efficiently managing hardware and software changes.

 Embrace the DevOps Culture

We understand that change is not always easy. However, through our Application Modernization & DevOps Transformation process, 2nd Watch can help you embrace and achieve a DevOps culture.

From a comprehensive assessment that measures your current software development and operational maturity to developing a strategy for where and how to apply different DevOps approaches to ongoing management and support, we will be with you every step of the way. Following is what a typical DevOps transformation engagement with us looks like:

Phase 0: Basic DevOps Review

  • DevOps and assessment overview delivered by our Solutions Architects

Phase 1: Assessment & Strategy

  • Initial 2-4 week engagement to measure your current software development and operational maturity
  • Develop a strategy for where and how to apply DevOps approaches

Phase 2: Implementation

Phase 3: Onboarding to Managed Services

  • 1-2 week onboarding to 2nd Watch Managed DevOps service and integration of your operations team and tools with ours

Phase 4: Managed DevOps

  • Ongoing managed service, including monitoring, security, backups, and patching
  • Ongoing guidance and coaching to help you continuously improve and increase the use of tooling within your DevOps teams

Getting Started with DevOps

While companies may understand the business benefits derived from DevOps, 2nd Watch has the knowledge and expertise to help accelerate their digital transformation journey. 2nd Watch is a Docker Authorized Consulting Partner and has earned the AWS DevOps Competency for technical proficiency, leadership, and proven success in helping customers adopt the latest DevOps principles and technologies. Contact us today to get started.

-Tessa Foley, Marketing

 

Facebooktwitterlinkedinmailrss

Cloud Automation for I.T. Governance, Risk, and Compliance (GRC) in Healthcare

It has been said that the “hero of a successful digital transformation is GRC.” The ISACA website states, “to successfully manage the risk in digital transformation you need a modern approach to governance, risk and regulatory compliance.” For GRC program development, it is important to understand the health information technology resources and tools available to enable long term success.

Cloud Automation for I.T. Governance, Risk, and Compliance (GRC) in Healthcare

What is GRC and why it important?

According to the HIPAA Journal, the average cost of a healthcare data breach is now $9.42 million. In the first half of 2021, 351 significant data breaches were reported, affecting nearly 28 million individuals. The needs have never been more acute among healthcare providers, insurers, biotechnology and health research companies for effective information security and controls. Protecting sensitive data and establishing a firm security posture is essential.  Improving health care and reducing cost relies on structured approaches and thoughtful implementation of available technologies to help govern data and mitigate risk across the enterprise.

Effective and efficient management of governance, risk, and compliance, or GRC, is fast becoming a business priority across industries. Leaders at hospitals and health systems of all sizes are looking for ways to build operating strategies that harmonize and enhance efforts for GRC. Essential to that mission are effective data governance, risk management, regulatory compliance, business continuity management, project governance, and security. But rather than stand-alone or siloed security or compliance efforts, a cohesive program coupled with GRC solutions allow for organizational leaders to address the multitude of challenges more effectively and efficiently.

What are the goals for I.T. GRC?

For GRC efforts, leaders are looking to:

  • Safeguard Protected Healthcare Data
  • Meet and Maintain Compliance to Evolving Regulatory Mandates and Standards
  • Identify, Mitigate and Prevent Risk
  • Reduce operational friction
  • Build in and utilize best practices

Managing governance, risk, and compliance in healthcare enterprises is a daunting task. GRC implementation for healthcare risk managers can be difficult, especially during this time of rapid digital and cloud transformation. But relying on internal legacy methods and tools leads to the same issues that have been seen on-premises, stifling innovation and improvement. As organizations adapt to cloud environments as a key element of digital transformation and integrated health care, leaders are realizing that now is the time to leverage the technology to implement GRC frameworks that accelerate their progress toward positive outcomes. What’s needed is expertise and a clear roadmap to success.

Cloud Automation of GRC

The road to success starts with a framework, aligned to business objectives, that provides cloud automation of Governance, Risk, and Compliance. Breaking this into three distinct phases, ideally this would involve:

  1. Building a Solid Foundation – within the cloud environment, ensuring infrastructure and applications are secured before they are deployed.
  • Image/Operation System hardening automation pipelines.
  • Infrastructure Deployment Automation Pipelines including Policy as Code to meet governance requirements.
  • CI/CD Pipelines including Code Quality and Code Security.
  • Disaster Recovery as a Service (DRaaS) meeting the organization’s Business Continuity Planning requirements.
  • Configuration Management to allow automatic remediation of your applications and operating systems.
  • Cost Management strategies with showback and chargeback implementation.
  • Automatic deployment and enforcement of standard security tools including FIM, IDS/IPS, AV and Malware tooling.
  • IAM integration for authorization and authentication with platforms such as Active Directory, Okta, and PingFederate, allowing for more granular control over users and elevated privileges in the clouds.
  • Reference Architectures created for the majority of the organization’s needs that are pre-approved, security baked-in to be used in the infrastructure pipelines.
  • Self-service CMDB integration with tools such ServiceNow, remedy and Jira ServiceDesk allowing business units to provision their own infrastructure while providing the proper governance guardrails.
  • Resilient Architecture designs
  1. Proper Configuration and MaintenanceInfrastructure misconfiguration is the leading cause of data breaches in the cloud, and a big reason misconfiguration happens is infrastructure configuration “drift,” or change that occurs in a cloud environment post-provisioning. Using automation to monitor and self-remediate the environment will ensure the cloud environment stays in the proper configuration eliminating the largest cause of incidents. Since workloads will live most of their life in this phase, it is important to ensure there isn’t any drift from the original secure deployment. An effective program will need:
  • Cloud Integrity Monitoring using cloud native tooling.
  • Log Management and Monitoring with centralized logging, critical in a well-designed environment.
  • Application Monitoring
  • Infrastructure Monitoring
  • Managed Services including patching to resolve issues.
  • SLAs to address incidents and quickly get them resolved.
  • Cost Management to ensure that budgets are met and there are no runaway costs.
  • Perimeter security utilizing cloud native and 3rd party security appliance and services.
  • Data Classification
  1. Use of Industry Leading Tools – for risk assessment, reporting, verification and remediation. Thwart future problems and provide evidence to stakeholders that the cloud environment is rock solid. Tools and verification components would include:
  • Compliance reporting
  • Risk Registry integration into tools
  • Future attestations (BAAs)
  • Audit evidence generation

Where do you go from here?

Your organization needs to innovate faster and drive value with the confidence of remaining in compliance. You need to get to a proactive state instead of being reactive. Consider an assessment to help you evaluate your organization’s place in the cloud journey and how the disparate forms of data in the organization are collected, controlled, processed, stored, and protected.

Start with an assessment that includes:

  • Identification of security gaps
  • Identification of foundational gaps
  • Remediation plans
  • Managed service provider onboarding plan
  • A Phase Two (Foundational/Remediation) proposal and Statement of Work

About 2nd Watch

2nd Watch is a trusted and proven partner, providing deep skills and advisory to leading organizations for over a decade. We earned a client Net Promoter Score of 85, a good way of telling you that our customers nearly always recommend us to others. We can help your organization with cloud native solutions. We offer skills in the following areas:

  • Developing cloud first strategies
  • Migration of workloads to the cloud
  • Implementing automation for governance and security guardrails
  • Implementing compliance controls and processes
  • Pipelines for data, infrastructure and application deployment
  • Subject matter expertise for FHIR implementations
  • Managed cloud services

Schedule time with an expert now, contact us.

-Tom James, Sr. Marketing Manager, Healthcare

Facebooktwitterlinkedinmailrss

Why You Need to Modernize Your Media Supply Chain

The demand for direct-to-consumer services and media content is continuously growing, and with that, audiences are raising their expectations of media and entertainment companies. Agile and innovative companies, such as Netflix, YouTube, and Amazon Prime, have arguably created and continue to enable the current viewership trends.

These streaming services have disrupted the traditional media landscape by empowering audiences to watch any content wherever and whenever they want. To accommodate new audience behaviors, relevant media companies use technologies to support the modern-day digital media supply chain, which has become increasingly complex to manage.

Why You Need to Modernize Your Media Supply Chain

However, legacy media companies have something that audiences still want: content. Most of these institutions have massive budgets for content production and enormous existing media libraries that have latent revenue potential. For example, legacy media brands own nostalgic cult classics, like “The Office,” that viewers will always want to watch, even though they have watched these episodes multiple times before.

As the volume of content consumption and demand increases, media organizations will find that a traditional media supply chain will constrain their ability to grow and meet customers in their preferred venues, despite owning a broad range of content that viewers want to watch. In order to keep up with audience demand, media companies will need to transform their media supply chains, so that they can distribute their media quickly and at scale, or they risk falling behind. Cloud technologies are the key to modernizing digital asset management, metadata models, quality control, and content delivery networks.

The Challenges of a Traditional Media Supply Chain

There are a lot of moving parts and behind-the-scenes work for media and entertainment businesses to push media assets to audiences. The media supply chain is the process used to create, manage, and deliver digital media from the point of origin (creator, content provider, content owner, etc.) to the destination (the audience.) For the right content and best experience to reach users on devices and platforms of their choice, digital media files must pass through various stages of processing and different workflows.

Media supply chain management is challenging and if there are inefficiencies within this  process, issues that will ultimately affect the bottom line will crop up. The following are top challenges of media supply chain management:

Decentralized Assets

The content wars are in full swing, and as a result, the media and entertainment industry has seen an influx of divestitures, mergers, and acquisitions. Organizations are accumulating as much content as possible by bolstering their media production with media acquisition, but as a result, content management has become more difficult. With more content comes more problems because this introduces more siloed third-party partners. As companies merge, the asset management system becomes decentralized, and media files and metadata are spread across different storage arrays in different datacenters that are managed by different MAMs with various metadata repositories.

Reliance on Manual Processes

Legacy media companies have been around much longer than modern technologies. As a result, some of these organizations still do many media production and distribution tasks manually, especially when it comes to generating, reviewing, and approving metadata. Metadata is essential for sorting, categorizing, routing, and archiving media content, as well as making the content accessible to a global, diverse audience. Using manual processes for these functions not only severely slows down a business, but they are also susceptible to human-error.

Quality of Media Assets

Today, consumers have the latest technology (4K TVs, surround sound systems, etc.), which requires the highest quality version of content sources. With dispersed content libraries and team, working derivative edits to meet localization and licensing requirements and locating native frame rate masters can be a challenging and time-consuming problem to tackle.

Benefits of Using Cloud Technology to Modernize the Media Supply Chain

Cloud-based technologies can help manage and resolve the issues typically encountered in a media supply chain. If media organizations do not utilize cloud solutions to modernize their supply chain, they risk being less agile to meet global audience demand, incurring higher costs to deliver media, and eroding viewership.

Legacy media brands are recognizing the consequences of not adopting modern technology to support their media supply chains, and recently, we’ve seen established media corporations partnering with cloud service providers to undertake a digital transformation. A recent and newsworthy example of this is the MGM and AWS partnership. MGM owns a deep library of film and television content, and by leveraging AWS, MGM is able to distribute this content with flexibility, scalability, reliability, and security to their audiences. AWS offers services and tools to modernize MGM’s media supply chain to be able to distribute content across multiple platforms quickly and at scale.

Businesses don’t need to strike historic deals with cloud service providers to receive the same benefits. By transforming into a cloud-based framework, any media company can reap the following major benefits of modernizing their media supply chain:

Scale and Agility

This point cannot be repeated enough because, again, customer media consumption is rapidly increasing, and businesses must find a way to meet those demands in order to retain customers and remain competitive. With cloud computing, the media supply chain is no longer limited to the capacity of on-premise data centers or the capital expenditure budget that was forecasted a year earlier. Using cloud technology allows organizations to be dynamic and flexible to adjust for growing demand. Businesses can easily scale services up (or even down) based on audience demands by simply adding (or removing) more cloud resources, which is easier and more forgiving than having to add more infrastructure or being stuck with wasted databases.

Cost Effective

Cloud services employ pay-as-you-go billing, which allows companies to pay for what they use rather than paying a fixed cost that may not fit their needs later on down the road. Most importantly, using the cloud removes the maintenance and operational costs associated with  maintaining data center footprints. The costs of server hardware, power consumption, and space for traditional data centers can really add up, especially because these costs are inflexible based on actual consumption. Utilizing cloud technology provides flexibility in billing and trims down maintenance costs.

Automation and Efficiency

Cloud services offer tools that can handle abstract operational complexities, like metadata management, that were historically done manually. These automation and AI features can dramatically reduce the need to manually generate this metadata because it implements machine learning and video, audio, and image recognition to largely automate the generation, review, and approval of metadata. Harnessing the power of automation frees up teams’ resources and time and redirects that energy on impactful, business-differentiating activities.

Data-Driven Decisions

Large audiences also means large amounts of data. Massive volumes of both structured and unstructured data requires increased processing power, storage, and more. Cloud computing has the scalable infrastructure to rapidly manage huge spikes of real time traffic or usage. Moreover, cloud service providers offer a variety of analytic tools that enable extract, transform, and loading of enormous datasets to provide meaningful insights quickly. Media companies can harness this data to improve user experiences and optimize supply chains, all of which greatly affects their bottom line.

Data-Driven Decisions

How do I Get Started in my Media Supply Chain Transformation?

The process is less daunting than you think, and there are experienced cloud advisors and consulting firms who can point you in the right direction. At 2nd Watch, we embrace your unique modernization journey to help transform and modernize your business and achieve true business growth through cloud adoption. To learn more about our media cloud services, visit our Media and Entertainment page or talk to someone directly through our Contact Us page.

Facebooktwitterlinkedinmailrss

Why You Should Invest in Managed Cloud Security Services

Cloud adoption throughout all industries has become incredibly pervasive in recent years. With cloud management as a relatively newer concept, business organizations may struggle to understand each aspect that is required to effectively run a cloud environment. One aspect that should be involved at every layer of the cloud is security, yet many organizations fail to implement a strong security system in their cloud until an attack happens and it is too late.

Managed Cloud Security Services

A cloud environment and the controls necessary to orchestrate a robust security and governance platform is not the same as your traditional on-premises environment.

The State of Cloud Security Today

As beneficial as the public cloud is for companies globally today, lack of security in the cloud can be a major issue. A report from Sophos indicated that iMost of these attacks are simply from misconfigurations of these organizations’ cloud security. Thus, the attacks can be prevented if configured and managed properly. Orca Security’s 2020 State of Public Cloud Security Report revealed that 80.7% of organizations have at least one neglected, internet-facing workload – meaning the OS is unsupported or unpatched. Attackers can use one small vulnerability as leverage to move across an organization, which is how most data breaches occur.

Managed cloud security services help lay a strong foundation for security in the cloud that is automated and continuous with 24/7 management. With constant management, threats and attacks are detected before they occur, and your business avoids the repercussions that come with security misconfigurations.

What are managed cloud security services?

Managed cloud security services provide security configurations, automation, 24/7 management, and reporting from an external cloud security provider. If an attack should occur, the result is downtime and the loss of money and data. Additionally, the lack of a well-rounded security system can lead to regulatory compliance challenges.

Monitoring and maintaining strong security requires continuous attention to be effective. Employing a managed security service gives businesses the protection they need while simultaneously providing IT departments with additional time to focus on other business concerns. Redirecting cybersecurity efforts to an external provider not only provides IT departments with flexibility, but also reduces costs compared to handling cybersecurity in house. Managing cybersecurity independently creates costs such as staffing, software licensing, hardware, implementation costs, and management costs. All the costs and management required for effective security can be overwhelming and managed security services takes the weight of maintaining the security of your data off your shoulders.

What are the benefits of using cloud security services?

Implementing strong cloud security may seem like an obvious choice for a business to make, but many businesses may not want to devote the time, resources, or money to building and maintaining a strong cybersecurity system. Investing your resources into cloud security is imperative for your business and pays off in the long run.

Five different benefits resulting from a strong cloud security system include:

  • Automation: Once your configurations have been set up, there is reduced reliance on human intervention. This minimizes time spent managing security while also reducing the risk for error.
  • Efficiency: Cloud services improve the security of your data and maintain regulatory compliance through timely patching and automated updates with less downtime.
  • Safety: Data is well-protected with cloud security due to 24/7 monitoring and real-time threat detection.
  • Proactive Defense: Threats are identified quickly and treated proactively in the cloud should an incident occur.
  • Cost-effective: The cloud requires a unique approach to security. While managed cloud security services can seem costly upfront, they prove to be worthwhile in the long run by utilizing expertise that may not be available in-house. Additionally, cloud security services will ensure the safety of your workloads and data, and prevent the costs associated with a data breach.

2nd Watch Managed Cloud Security

At 2nd Watch, we understand cloud security is important at every step of your cloud journey. 2nd Watch has a dedicated Managed Security Team that monitors your cloud environments 24/7/365, remediating vulnerabilities quickly. Rather than putting security on the backburner, we believe security is a pillar of business, and building it into the foundation of a company is important to meet evolving compliance needs in a cost-effective manner.

Companies just getting started in the cloud can rely on 2nd Watch to get security right for them the first time. Even for companies already established in the cloud, we can take an in-depth look at security and compliance maturity, existing capabilities, and growth trajectory to provide a prescriptive security roadmap. No matter where you are in your cloud journey, we ensure your security is well-integrated into your cloud environments.

At 2nd Watch we are with you from beginning to end, monitoring your security even after implementation. At a glance, our end-to-end services include:

  • Security Review: Ensures the proper safeguards are utilized for your multi-cloud environments with a single point of contact for your security needs. Our security assessment and remediation offering can reveal how your cloud security posture stacks up to industry standards such as CIS, GDPR, CCPA, HIPAA, NIST, PCI DSS, and SOC 2.
  • Environment Monitoring: 24/7/365 multi-cloud monitoring protects against the most recent vulnerabilities.
  • Threat Analysis: Managed Reliability Operations Center (ROC) proactively analyzes and remediates potential threats.
  • Issue Resolution: Identified issues are quickly resolved providing enterprise class and proactive defense.

Other solutions we provide include:

Security should be integrated into every layer of your public cloud infrastructure. We can help you achieve that through our comprehensive suite of security services and a team of experts that cares about your success in the cloud. To learn more about our managed cloud security services, visit our Cloud, Compliance, Security, & Business Continuity page or talk to someone directly through our Contact Us page.

-Tessa Foley, Marketing

Facebooktwitterlinkedinmailrss

Why Media Companies Should Adopt the Cloud

The Advantages of Cloud Computing for Media & Entertainment

We are living in a revolutionary era of digital content and media consumption. As such, media companies are reckoning with the new challenges that come with new times. One of the biggest changes in the industry is consumer demand and behavior. To adapt, M&E brands need to digitally transform their production, distribution, and monetization processes. Cloud solutions are a crucial tool for this evolution, and M&E organizations should prioritize cloud strategy as a core pillar of their business models to address industry-wide shifts and stay relevant in today’s ultra-competitive landscape.

The Challenge: Addressing Greater Audience Expectations and Volatility

Viewing behavior and media distribution has greatly impacted the M&E industry. Entertainment content consumption is at an all-time high, and audiences are finding new and more ways to watch media. Today, linear television is considered old-school, and consumers are favoring platforms that give them the power of choice and freedom. Why would you tune in to your cable television at a specific time to watch your favorite show when you can watch that same show anytime, anywhere, on any device or platform?

With new non-linear television services, media companies have less control over their audiences’ viewing experience. Before, viewers were constrained by broadcasting schedules and immobile, unconnected TVs. Now, audiences have taken viewership into their own hands, and M&E brands must discover ways to retain their viewers’ attention and loyalty in the era of endless options of content creators and streaming platforms.

Cloud Computing for Media & Entertainment

The Cloud Has the Flexibility and Scalability to Handle Complex Workflows

OTT streaming services are the most popular alternative to linear television broadcasting. It is a solution that meets the audience’s expectation of access to content of their choosing whenever and wherever they want. However, OTT platforms require formatting multiple video files to be delivered to any device with varying connection speeds. As such, OTT streaming services need advanced video streaming workflows that encode and transcode, protect content, and possess storage capacities that continuously grow.

Because OTT broadcasting has complicated workflows and intense infrastructure needs, M&E companies need to consider scalability. OTT streaming that utilizes on-premises data centers will stymie growth for media organizations because legacy applications and software are resource and labor intensive. When OTT services are set up with on-premises streaming, it requires a group of configured live encoding and streaming services to deliver content to audiences.

The in-house services then need to have the computing capacity and capabilities in order to deliver content without interruptions. On top of that, technical staff are necessary to maintain the proprietary hardware, ensure its security, and continuously upgrade it as audiences grow. If companies opt for on-premises OTT streaming, they will not be able to achieve the scalability and quality of experience that they need to keep up with audience expectations.

A cloud-based infrastructure solves all of these issues. To reiterate, on-premises OTT platforms are very resource-intensive with complex ongoing maintenance and high upfront costs. Using cloud services for OTT streaming addresses the downfalls of on-premises streaming by leveraging a network for services dedicated to delivering video files. The benefits of cloud computing for OTT workflows immensely impact streaming latency and distribution, leading to a better end user experience. Cloud infrastructures have the following advantages to on-premises infrastructure:

  • Geography: Unlike in-house data centers, cloud servers can be located around the world, and content can be delivered to audiences via the closest data center, thereby reducing streaming latency.
  • Encoding and transcoding: Cloud services have the ability and capacity to host rendered files and ensure they are ready for quick delivery.
  • Flexible scalability: Providers can easily scale services up or down based on audience demands by simply adding more cloud resources, rather than having to purchase more infrastructure.
  • Cost optimization: Cloud cost is based on only the resources a business uses with none of the maintenance and upkeep costs, and the price adjusts up or down depending on how much is consumed. on-premises costs include server hardware, power consumption, and space. Furthermore, on-premises is inflexible based on actual consumption.

The Cloud Can Help You Better Understand Your Audiences to Increase Revenue

Another buzzword we hear often these days is “big data.” As audiences grow and demonstrate complex behaviors, it’s important to capture those insights to better understand what will increase engagement and loyalty. Cloud computing is able to ingest and manage big data in a way that is actionable: it is one thing to collect data, but it is another thing to process and do something with it. For M&E organizations, utilizing this data helps improve user experiences, optimize supply chains, and monetize content better.

Big data involves manipulating petabytes of data, and the scalable nature of a cloud environment makes it possible to deploy data-intensive applications that power business analytics. The cloud also simplifies connectivity and collaboration within an organization, which gives teams access to relevant and real time analytics and streamlines data sharing. Furthermore, most public cloud providers offer machine learning tools, which makes processing big data even more efficient.

From a data standpoint, a cloud platform is an advantageous option for those who are handling big data and want to make data-driven decisions. The compelling benefits of cloud computing for data are as follows:

  • Faster scalability: Large volumes of both structured and unstructured data requires increased processing power, storage, and more. The cloud provides not only readily-available infrastructure, but also the ability to scale this infrastructure very rapidly to manage large spikes in traffic or usage.
  • Better analytic tools: The cloud offers a number of instant, on demand analytic tools that enable extract, transform, and loading (ETL) of massive datasets to provide meaningful insights quickly.
  • Lowers cost of analytics: Mining big data in the cloud has made the analytics process less costly. In addition to the reduction of on-premises infrastructure, companies are reducing costs related to system maintenance and upgrades, energy consumption, facility management, and more when switching to a cloud infrastructure. Moreover, the cloud’s pay-as-you-go model is more cost-efficient, with little waste of resources.
  • Better resiliency: In cases of cyber-attacks, power outages or equipment failure, traditional data recovery strategies are slow, complex, and risky. The task of replicating a data center (with duplicate storage, servers, networking equipment, and other infrastructure) in preparation for a disaster is tedious, difficult, and expensive. On top of that, legacy systems often take very long to back up and restore, and this is especially true in the era of big data and large digital content libraries, when data stores are so immense and expansive. Having the data stored in cloud infrastructure will allow your organization to recover from disasters faster, thus ensuring continued access to information and vital big data insights.

The Cloud is Secure

There is a misconception that the public cloud is less secure than traditional data centers. Of course, these are valid concerns: media companies must protect sensitive data, such as customers’ personally identifiable information. As a result, security and compliance is crucial for an M&E business’s migration to the cloud.

We have read about cloud security breaches in news headlines. In most cases, these articles fail to accurately point out where the problem occurred. Usually, these breaches occur not due to the security of the cloud itself, but due to the policies and technologies for security and control of the technology. In nearly all cases, it is the user, not the cloud provider, who fails to manage the controls used to protect an organization’s data. The question for M&E business should not be “Is the cloud secure?” but rather “Am I using the cloud securely?”

Whether M&E organizations use a public cloud, private cloud, or hybrid cloud, they can be confident in the security of their data and content. Here is how the cloud is as secure, if not more secure, than in-house data centers:

  • Cloud architecture is homogenous: In building their data centers, cloud providers used the same blueprint and built-in security capabilities throughout their fabrics. The net effect is a reduced attack footprint and fewer holes to exploit since the application of security is ubiquitous.
  • Public cloud providers invest heavily in security measures: The protection of both the infrastructure and the cloud services is priority one and receives commensurate investment. Public cloud providers collectively invest billions in security research, innovation, and protection.
  • Patching and security management is consistent: Enterprises experience security breaches most often because of errors in configuration and unpatched vulnerabilities. Public cloud providers are responsible for the security of the cloud, which includes patching of infrastructure and managed services.

-Anthony Torabi, Strategic Account Executive, Media & Entertainment

Facebooktwitterlinkedinmailrss

Back to the Basics: The 3 Cloud Computing Service Delivery Models

In recent years, the adoption of cloud computing services has increased tremendously, especially given the onset of the pandemic. According to a report from the International Data Corporation (IDC), the public cloud services market grew 24.1% year over year in 2020. This increase in popularity is credited to the benefits provided by cloud including flexibility, on-demand capacity planning, cost reductions, and ability for users to access shared resources from anywhere.

No matter where you are in your cloud journey, understanding foundational concepts like the different types of cloud service models is important to your success in the cloud. These cloud computing service models provide different levels of control, flexibility, and management capabilities. With a greater understanding of the models, their benefits, and the different ways to deploy these infrastructures, you can determine the method that matches your business needs best.

What are the 3 Cloud Computing Service Delivery Models?

Different cloud computing service delivery models help meet different needs, and determining which model is best for you is an important first step when you transition to the cloud. The three major models are IaaS, PaaS, and SaaS.

Infrastructure as a Service (IaaS)

IaaS is one of the most flexible cloud computing models. The infrastructure and its features are presented in a completely remote environment, allowing clients direct access to servers, networking, storage, and availability zones. Additionally, IaaS environments have automated deployments, significantly speeding up your operations in comparison to manual deployments. Some examples of IaaS vendors include Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform. In these types of environments, the vendor is responsible for the infrastructure, but the users still have complete control over the Identity Access Management, data, applications, runtime, middleware, operating system, and virtual network.

Platform as a Service (PaaS)

Another cloud computing service delivery model is Platform as a Service (PaaS). PaaS is a subset of IaaS, except customers are only responsible for Identity Access Management, data, and applications and it removes the need for organizations to manage the underlying infrastructure. Rather than having the responsibility over hardware and operating systems as with IaaS, PaaS helps you focus on the deployment and management of your applications. There is less need for resource procurement, capacity planning, software maintenance, and patching. Some examples of PaaS include Windows Azure, Google AppEngine and AWS Elastic Beanstalk.

Software as a Service (SaaS)

Perhaps the most well-known of all three models is SaaS, where the deployment is redistributed to third party services. The customer’s only responsibilities are Identity Access Management, data, and the task of managing software. SaaS offers the entire package offered between IaaS and PaaS, as infrastructure, middleware, and applications deployed over the web can be seamlessly accessed from any place at any time, no matter the platform. Vendors of SaaS include CRM services like Salesforce and productivity software services like Google Apps. One major benefit of SaaS is that it reduces the costs of software ownership and eliminates the need for IT staff to manage the software so your company can focus on what it does best.  Another benefit of SaaS that its relevance to businesses today, as SaaS is considered the best option for remote collaboration. With SaaS, your applications can be accessed from any geographical location and your company is not responsible for managing the hardware.

Cloud Computing Service Delivery Models

Choosing the Cloud Computing Model that is Right for You

 Each cloud computing service model has different benefits to consider when determining the model that will work best for your business needs, projects, and goals.

While IaaS gives you complete control over your infrastructure, some businesses may decide they do not need to fully manage their applications and infrastructure on their own. IaaS is considered a good fit for SMEs and startups who do not have the resources or time to buy and build the infra for their own network. Additionally, larger companies may prefer to have complete control and scalability over their infrastructure, so they too may opt for IaaS for a pay-as-you go, remote option with powerful tools. One downside to IaaS is that it is more costly in comparison to PaaS and SaaS cloud computing models, yet it does minimize costs in the sense it eliminates the need to deploy on-premises hardware.

IaaS Benefits

  • Reduced vendor lock-in
  • Platform virtualizations
  • On-demand scaling
  • GUI and API-based access
  • Increased security
  • Multi-tenant architecture

IaaS Disadvantages

  • Potential for vendor outages
  • The cost of training how to manage new infrastructure

PaaS is a good choice if you are looking to decrease your application’s time-to-market, because of its remote flexibility and accessibility. Thus, if your project involves multiple developers and vendors, each have quick accessibility to computing and networking resources through a PaaS. PaaS might also be used by a team of developers to test software and applications.

PaaS Benefits

  • Rapid product development through simplified process
  • Custom solutions
  • Highly scalable
  • Eliminates need to manage basic infrastructure
  • Future-proof
  • Multi-tenant architecture

PaaS Disadvantages

  • Security issues
  • Increased dependency on vendor for speed and support

SaaS is a feasible option for smaller companies that need to launch their ecommerce quickly or for short term projects that require quick, easy, and affordable collaboration from either a web or mobile standpoint. Any company that requires frequent collaboration such as transferring content and scheduling meetings will find SaaS convenient and accessible.

SaaS Benefits

  • On-demand service
  • Automated provisioning/management of your cloud infrastructure
  • Subscription-based billing
  • Allows for full remote collaboration
  • Reduced software costs
  • Pay-as-you-go

SaaS Disadvantages

  • Less control
  • Limited solutions

The 3 Cloud Computing Deployment Models

Another foundational concept of cloud are the deployment models. A deployment model is where your infrastructure resides and also determines who has control over its management. Like the cloud computing service delivery models, it is also important to choose the deployment model that will best meet the needs of your business.

There are three types of cloud computing deployment models:

Public Cloud

A cloud deployment means your applications are fully run in the cloud and accessible by the public. Often, organizations will choose a public cloud deployment for scalability reasons or when security is not a main concern. For example, when testing an application. Businesses may choose to create or migrate applications to the cloud to take advantage of its benefits, such as its easy set-up and low costs. Additionally, a public cloud deployment allows for a cloud service provider to manage your cloud infrastructure for you.

On-Premises/Private

 An on-premises cloud deployment, or private cloud deployment, is for companies who need to protect and secure their data and are willing to pay more to do so. Since its on-premises, the data and infrastructure are accessed and managed by your own IT team. Due to in-house maintenance and fixed scalability, this deployment model is the costliest.

Hybrid

 A hybrid cloud deployment connects cloud-based resources and existing non-cloud resources that do not exist in the cloud. The most common way to do this is between a public cloud and on-premises infrastructure. Through a hybrid cloud integration, you can segment data according to the needs of your business. For example, putting your highly sensitive data on-premises while putting less-sensitive data on the public cloud for accessibility and cost-effectiveness. This allows you to enjoy the benefits of the cloud while maintaining a secure environment for your data.

Next Steps

Determining the cloud computing service delivery model and deployment model best for your organization are both critical steps to the success of your company’s cloud computing journey. Get it right the first time by consulting with 2nd Watch. With a decade of experience as a managed service provider, we provide cloud services for your public cloud workloads. As an AWS Consulting Partner, Gold Microsoft Partner, and Google Cloud Partner, our team has the knowledge and expertise to efficiently guide you through your cloud journey. Contact us to learn more or talk to one of our experts.

-Tessa Foley, Marketing

Facebooktwitterlinkedinmailrss

An Introduction to AWS Proton

As a business scales, so does its software and infrastructure. As desired outcomes adapt and become more complex that can quickly cause a lot of overhead and difficulty for platform teams to manage over time and these challenges often limit the benefits of embracing containers and serverless. Shared services offer many advantages in these scenarios by providing a consistent developer experience while also increasing productivity and effectivity of governance and cost management.

Introduced in December 2020 Amazon Web Services announced the general availability of Proton: an application targeted at providing tooling to manage complex environments while bridging infrastructure and deployment for developers. In this blog we will take a closer look into the benefits of the AWS Proton service offering.

What is AWS Proton?

AWS Proton is a fully managed delivery service, targeted at container and serverless workloads, that provides engineering teams the tooling to automate provisioning and deploy applications while enabling them to provide observability and enforce compliance and best practices. With AWS Proton, development teams utilize resources for infrastructure and to deploy their code. This in turn increases developer productivity by allowing them to focus on their code, software delivery, reduce management overhead, and increase release frequency. Teams can use AWS Proton through the AWS Console and the AWS CLI, allowing for teams to get started quickly and automate complicated operations over time.

How does it work?

The AWS Proton framework allows administrators to define versioned templates which standardize infrastructure, enforce guard rails, leverage Infrastructure as Code with CloudFormation, and provide CI/CD with Code Pipeline and Code Build to automate provisioning and deployments. Once service templates are defined, developers can choose a template and use it to deploy their software. As new code is released, the CI/CD pipelines automatically deploys the changes. Additionally, as new template versions are defined, AWS Proton provides a “one-click” interface which allows administrators to roll out infrastructure updates across all the outdated template versions.

When is AWS Proton right for you?

AWS Proton is built for teams looking to centrally manage their cloud resources. The service interface is built for teams to provision deploy and monitor applications. AWS Proton is worth considering if you are using cloud native services like Serverless applications or if you utilize containers in AWS. The benefits continually grow when working with a service-oriented architecture, microservices, or distributed software as it eases release management, reduces lead time, and creates an environment for teams to operate within a set of rules with little to no additional overhead. AWS Proton is also a good option if you are looking to introduce Infrastructure as Code or CI/CD pipelines to new or even existing software as AWS Proton supports linking existing resources.

Getting Started is easy!

Platform Administrators

Since AWS Proton itself is free and you only pay for the underlying resources, you are only a few steps away from giving it a try! First a member of the platform infrastructure team creates an environment template. An environment defines infrastructure that is foundational to your applications and services including compute networking (VPCs), Code Pipelines, Security, and Monitoring. Environments are defined via CloudFormation templates and use Jinja for parameters rather than the conventional parameters section in standard CloudFormation templates. You can find template parameter examples in the AWS documentation. You can create, view, update, and manage your environment templates and their versions in the AWS Console.

Introduction to AWS Proton Service | 2nd Watch

Once an environment template is created the platform administrator would create a service template which defines all resources that are logically relative to a service. For example, if we had a container which performs some ETL this could contain an ECR Repository, ECS Cluster, ECS Service Definition, ECS Task Definition, IAM roles, and the ETL source and target storage.

In another example, we could have an asynchronous lambda which performs some background tasks and its corresponding execution role. You could also consider using schema files for parameter validation! Like environment templates, you can create, view, update, and manage your service templates and their versions in the AWS Console.

Once the templates have been created the platform administrator can publish the templates and provision the environment. Since services also include CI/CD pipelines platform administrators should also configure repository connections by creating the GitHub app connector. This is done in the AWS Developer Tools service or a link can be found on the AWS Proton page in the Console.

Once authorized, the GitHub app is automatically created and integrated with AWS and CI/CD pipelines will automatically detect available connections during service configuration.

 

At this time platform administrators should see a stack which contains the environment’s resources. They can validate each resource, interconnectivity, security, audits, and operational excellence.

Developers

At this point developers can choose which version they will use to deploy their service. Available services can be found in the AWS Console and developers can review the template and requirements before deployment. Once they have selected the target template they choose the repository that contains their service code, the GitHub app connection created by the platform administrator, and any parameters required by the service and CodePipeline.

After some time, developers should be able to see their application stack in CloudFormation, their application’s CodePipeline resources, and the resources for their application accordingly!

In Closing

AWS Proton is a new and exciting service available for those looking to adopt Infrastructure as Code, enable CI/CD pipelines for their products, and enforce compliance, consistent standards, and best practices across their software and infrastructure. Here we explored a simple use case, but real world scenarios likely require a more thorough examination and implementation.

AWS Proton may require a transition for teams that already utilize IaC, CI/CD, or that have created processes to centrally manage their platform infrastructure. 2nd Watch has over 10 years’ experience in helping companies move to the cloud and implement shared services platforms to simplify modern cloud operations. Start a conversation with a solution expert from 2nd Watch today and together we will assess and create a plan built for your goals and targets!

-Isaiah Grant, Cloud Consultant

Facebooktwitterlinkedinmailrss

Why Cloud Services are Here to Stay for Media & Entertainment

During the COVID-19 pandemic, media and entertainment (M&E) organizations accelerated their need to undertake a digital transformation. As we approach a post-pandemic world, M&E companies are realizing that their digital transformation is no longer just a short-term solution, but rather, it is a long-term necessity to survive the increasingly competitive and saturated landscape of content distribution and consumption. Cloud service providers play a crucial role to M&E brands as they continue their digital evolution. Throughout the pandemic, cloud solutions allowed M&E companies to adapt efficiently and effectively. Beyond the landscape of COVID-19, a cloud-based framework will continue to facilitate agility and scalability in the M&E business model.  

Cloud Services for Media and Entertainment (M&E) | 2nd Watch

How COVID-19 Impacted the Media and Entertainment Industry

When COVID-19 created an unprecedented environment and altered our daily operations, people and businesses had to rapidly adjust to the new circumstances. In particular, the M&E industry faced a reckoning that was imminent before the pandemic and became more acute during the pandemic.

For M&E businesses, COVID-19 forced upon them an important pivotal point in their digital strategy. The pandemic didn’t present vastly new challenges for M&E organizations, it simply accelerated and highlighted the problems they had already begun experiencing in the last five or so years. Viewer behavior is one of the biggest shake-ups in the M&E industry. Prior to 2020, audiences were already hunting for new ways to consume content. Traditional linear broadcast was waning and modern digital streaming services were booming. Media content consumption was drastically changing, as audiences streamed content on different devices, such as their smartphones, tablets, connected TVs, PCs, and gaming consoles. Now, legacy M&E brands are no longer competing just against nimble new players in the streaming space, but they are also competing against music, gaming, and esport platforms. All of these trends that were in motion pre-pandemic became more apparent after society began sheltering-in-place.

With most of the United States going remote, industry giants, like Warner Brothers and Disney, pivoted their focus to streaming content to adjust to shelter-in-place orders. In an unprecedented move, Warner Brothers began releasing new movies in theaters and via streaming platforms simultaneously. Disney’s emphasis on its streaming service, Disney Plus, paid off:  it exploded during quarantine and quickly accumulated 100 million subscribers. Additionally, Disney also followed a similar cinema distribution model to Warner Brothers by releasing new hits via streaming rather than just in theaters. 

The need for digital innovation was crucial for the M&E industry to adapt to the new circumstances created by the pandemic, and this need will continue long into the post-COVID world. M&E organizations faced a catalyst in their structural transformation, and the digitization of content workflows and distribution became absolutely imperative as employees went remote and content consumption hit an all-time high. Moreover, certain market trends were felt more acutely during the pandemic and represented a paradigmatic shift for the M&E industry. These trends include the rise of direct-to-consumer, content wars via mergers and acquisitions, and wavering audience loyalty. Change is ever-present, and the consequences of not adapting to the modern world became obvious and unavoidable in the face of the pandemic. Ultimately, M&E incumbents who are slow to modernize their technology, production, and monetization strategies will be left behind by more agile competitors

How M&E Companies Can Use the Cloud to Innovate

As we return “back to normal,” we’ll see how the pandemic affected our societal structures temporarily and permanently. The M&E industry was particularly changed in an irrevocable manner: a new age of media has been fully realized, and M&E businesses will have to rethink their business models as a result. How the pandemic will continue to evolve from here is still unknown, but it is clear that media organizations will have to continue to innovate in order to keep up with the changes in working patterns and audience behavior.

To adapt to the accelerated changes driven by COVID-19, the modern media supply chain will require agility, flexibility, and scalability. Cloud solutions (such as Microsoft Azure, Amazon Web Services, and Google Cloud Platform) are the key enabler for M&E companies as they look to innovate. According to a Gartner report on digital transformation in media and entertainment, 80% of broadcasters and content creators migrated all or part of their operations to public cloud platforms as an urgent response to effects of quarantine in 2020. By switching to cloud-based infrastructures, M&E companies were able to collaborate and create remotely, better understand real-time audience behavior, and maintain a secure environment while supporting media production, storage, processing, and distribution requirements.

There is no one-size-fits-all cloud strategy, as it is dependent on the business. Some companies opt for a single cloud provider, while others choose a multi cloud strategy. A hybrid cloud solution is also an option, which utilizes data centers in conjunction with cloud service providers. Regardless of a company’s cloud strategy, the benefits of migrating to the cloud remain the same. Below we’ll dive into a couple of the pros of utilizing the cloud for morderning workflows, supply chains, and data analyses. 

Unifying Workflows

With a cloud platform, teams can now collaborate remotely and globally, which ultimately leads to greater productivity and efficiency in content creation. When it comes to media production, whether it is live or pre-filmed, massive teams of professionals are needed to make the vision come alive (editors, visual effects artists, production professionals, etc.) COVID-19 demonstrated that teams using cloud service providers could still work collaboratively and effectively in a remote environment. In fact, businesses realized that requiring teams to come on-site for content production can be more time consuming and costly than working remotely. Virtual post-production is a great example of how the cloud is more economical from a financial and time sense. Using a modern cloud infrastructure, M&E brands can create virtual workstations, which replaces physical workstations at the user’s desk. Unlike traditional workstations, virtual workstations do not have a capital expense. Virtual workstations are extremely customizable in terms of size and power to the exact specifications needed for a given task. Furthermore, the billing is flexible and you only pay for what resources you use. Lastly, with physical workstations, there are many “hidden costs.” Think about the electricity and staffing fees that businesses must pay in order to keep a workstation running. When you switch to a virtual workstation for post-production work, all of the aforementioned costs are managed by a cloud service provider.

Streamlining the Media Supply Chain

As media and entertainment shifts to direct-to-consumer, content management has become absolutely crucial in the media supply chain. Content libraries are only growing bigger and there is an influx of newly-produced assets as team workflows work more efficiently. Even so, most media companies store their library assets on-premise and within tape-based LTO cartridges. By doing so, these assets are neither indexable, searchable, or readily accessible. This slows down editing, versioning, compliance checking, and repackaging, all of which hurts an organization’s ability for rapid content monetization. By implementing a cloud-based infrastructure, M&E companies can utilize tools like machine learning capabilities to manage, activate, and monetize their assets throughout the content supply chain.

Capturing Real-time Data

Archaic and lagged metrics, such as overnight ratings and box office returns, will struggle today to produce actionable insights. Digital transformation for M&E organizations will require a technology and cultural transformation towards a data-driven mindset. To make data-driven decisions, you need to have the tools to collect, process, and analyze the data. Cloud platforms can help process big data by employing machine learning capabilities to deeply understand audiences, which can translate into monetization opportunities further down the funnel. By harnessing the cloud to redefine data strategy, businesses can make confident decisions using real-time data and use actionable insights to deliver real transformation. 

Conclusion 

Before the pandemic, 2020 was shaping up to be a pivotal year for the M&E industry as audience behavior was changing and new competitors were cropping up; however, the effects of the COVID-19 expedited these trends and forced organizations to transform immediately. In this new age of media, M&E companies must reckon with these unique and long-lasting challenges and seek to change their business models, cultures and technologies to keep up with the changing landscape. 

-Anthony Torabi, Media & Entertainment Strategic Account Executive

Facebooktwitterlinkedinmailrss